LABORATORY DATA CONSULTANTS, INC.

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

IWM Consulting Group 7428 Rockville Road Indianapolis, IN 46214 ATTN: Brad Gentry September 25, 2018

SUBJECT: Former Amphenol Facility, Data Validation

Dear Mr. Gentry,

Enclosed are the final validation reports for the fraction listed below. These SDGs were received on September 19, 2018. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #43160:

SDG # Fraction: 10447725, 10447804 Volatiles

The data validation was performed under Level III & IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- Sewer Gas Vapor Intrusion Investigation Work Plan, Franklin Power Products, Inc./Amphenol Corporation, Franklin, Indiana; September 2018
- USEPA National Functional Guidelines for Organic Superfund Methods Data Review;
 January 2017

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

Project Manager/Senior Chemist

	104 pages-EM	1 WEEK	TAT			R1 (adde	ed B-	·C)					Atta	achr	nen	t 1																				
	90/10		LDC#	431	160	(IV	/M	Co	nsı	ulti	ng	Gr	oup) - I	Ind	ian	арс	olis	, IN	/ F	⁼ ori	mei	r Ai	πp	her	ıol	Fac	ilit	у)								
LDC	SDG#	DATE REC'D	(3) DATE DUE	(9 VC (T 15/5	O-	(9 VO (826	A																														
Matrix	Air/Water/Soil		,	Α	s	W	s	W	s	W	s	w	s	W	s	W	s	W	s	W	s	W	s	W	s	W	s	W	s	W	s	w	s	W	S	W	s
Α	10447725	09/19/18	09/26/18	14	0	-	-												<u></u>	<u> </u>				<u></u>													Ш
Α	10447725	09/19/18	09/26/18	2	0	-													<u> </u>																		
В	10447804	09/19/18	09/26/18	13	0	-	-																														
В	10447804	09/19/18	09/26/18	1	0	-	-																														
С	50205666	09/19/18	09/26/18	-	-	7	0											L																			
С	50205666	09/19/18	09/26/18	-	-	1	0																														
		İ										İ				İ			Ì	İ			İ	Ì													
												İ				İ			Ī	Ī																	
				 								T			1	T	†		T	†	†	 	┋	T													П
												T			T	T		†	T	T	T		†	İ													
						\Box						\vdash							T		\vdash		T	T													\Box
				 															†	1			†														
						\Box					<u> </u>	I		\vdash	╁	T		\vdash	T	T	\dagger	 	T	T													
		 		 								 			1	T		\vdash	t^-	I^{-}	\dagger	╁	T^-	T	 												\square
				 								 		\vdash	 	1	-	\vdash	 	I^-	+	 	+-	\vdash													Н
				<u> </u>							-	 		-	╁	╁	 	 	╁	╁	+	-	 	 	 						-					 	$\vdash \vdash$
 		+		 		-			 		 	\vdash	 	\vdash	1	+	+	+	I	+	+-	 	+-	\vdash	 		-	 			-	<u> </u>	 	 	\vdash	_	$\mid \vdash \mid$
				<u> </u>	-							 		-	 	 	 	-	╫	╫	╁┈	-	+-	\vdash	-										-		Н
				 		$\vdash \vdash \vdash$			<u> </u>		 	\vdash		\vdash	+	+	-	\vdash	\vdash	\vdash	+	-	+	\vdash	-		-				-		 		\vdash		H
╟─┼		-		 		\vdash			<u> </u>		 	-	 	╁	╂	+	╁	\vdash	┼	+	╫	 	+-	\vdash	-		-			ļ	<u> </u>			 		-	H
\vdash		1		<u> </u>		-			<u> </u>			-	-	+	 	1-	-	-	 	╂	╁	-	╁──	-	-		<u> </u> 			 	<u> </u>			-	$\vdash \vdash$		H
-		-		-		-			<u> </u>		 	<u> </u>	-	+	\vdash	+	-	├	 	\vdash	+-	-	┼─	 	-									-		-	$\mid - \mid \mid$
-		 		-		-			<u> </u>		ļ	 	-	-	+	┼	-	├	├	┼	┼		┼	├	-			<u> </u>		ļ	<u> </u>	<u> </u>	 	<u> </u>	\vdash	-	-
												-	-	-	-	-	-		╂	╂	╂	-	├	-	-		ļ							-	\vdash		$\mid - \mid \mid$
		 		-		-			<u> </u>		 	-	-	-	╂	-	-		╂	╀	-	-	┼		-	-	<u> </u>								$\vdash \vdash$	-	$\mid - \mid$
		 		-		-			ļ		<u> </u>	_	-	-	╂	╀-	-	-	╂	╀	╂	-	╀	-	-		-	<u> </u>				<u> </u>		<u> </u>		<u> </u>	$\vdash \vdash \vdash$
				ļ					<u> </u>			<u> </u>	-	-	-	-	-	-	 	ऻ	-	-	 	-	-		<u> </u>								$\vdash \vdash$	_	
Total	T/PG			30	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	38

LDC Report# 43160A48

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Former Amphenol Facility

LDC Report Date:

September 24, 2018

Parameters:

Volatiles

Validation Level:

Level III & IV

Laboratory:

Pace Analytical Services, LLC.

Sample Delivery Group (SDG): 10447725

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MH 250056**	10447725001**	Air	09/14/18
MH 250051 Grab	10447725003	Air	09/14/18
MH 250050	10447725005	Air	09/14/18
MH 250040	10447725007	Air	09/14/18
MH 250030	10447725009	Air	09/14/18
MH 250020**	10447725011**	Air	09/14/18
MH 250010	10447725013	Air	09/14/18
MH 250055	10447725015	Air	09/14/18
MH 250054	10447725017	Air	09/14/18
MH 250053 B	10447725019	Air	09/14/18
MH-250053	10447725021	Air	09/14/18
FD-1	10447725023	Air	09/14/18
MH 250052	10447725025	Air	09/14/18
MH 250090	10447725027	Air	09/14/18
MH 250080	10447725029	Air	09/14/18
FD-2	10447725031	Air	09/14/18
MH 250080DUP	10447725029DUP	Air	09/14/18
FD-2DUP	10447725031DUP	Air	09/14/18

^{**}Indicates sample underwent Level IV validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Sewer Gas Vapor Intrusion Investigation Work Plan, Franklin Power Products, Inc./Amphenol Corporation, Franklin, Indiana (September 2018) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) Method TO-15 and EPA Method TO-15 in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Level IV data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound for analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The canisters were properly pressurized and handled.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 24 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 30.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 30.0% for all compounds.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

Canister blank analyses were performed for every sample canister. No contaminants were found in the canister blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were not required by the method.

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples MH 250054 and FD-1 and samples MH 250080 and FD-2 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	ation (ug/m³)	
Compound	MH 250054	FD-1	RPD
cis-1,2-Dichloroethene	0.30	0.24	22
Methylene chloride	11.3	11.5	2
Tetrachloroethene	2.5	2.6	4
1,1,1-Trichloroethane	0.14	0.12	15
Trichloroethene	0.58	0.50	15

	Concentra	ition (ug/m³)	
Compound	MH 250080	FD-2	RPD
1,1-Dichloroethane	0.22	0.083U	Not calculable
1,2-Dichloroethane	1.6	1.5	6
Methylene chloride	13.1	19.6	40
Tetrachloroethene	12.7	12.2	4
1,1,1-Trichloroethane	23.9	22.9	4
Trichloroethene	68.2	65.0	5

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation.

XIII. Target Compound Identifications

All target compound identifications met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation.

XIV. System Performance

The system performance was acceptable for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Former Amphenol Facility
Volatiles - Data Qualification Summary - SDG 10447725

No Sample Data Qualified in this SDG

Former Amphenol Facility Volatiles - Laboratory Blank Data Qualification Summary - SDG 10447725

No Sample Data Qualified in this SDG

Former Amphenol Facility Volatiles - Field Blank Data Qualification Summary - SDG 10447725

No Sample Data Qualified in this SDG

ANALYTICAL RESULTS

Project:

IN.AMP18.01 Former Amphenol Fa

Pace Project No.:

Date: 09/18/2018 03:06 PM

o.: 10447725

Sample: MH 250056	Lab ID: 104	47725001	Collected: 09/14/	18 09:47	Received: 09	/17/18 10:05 N	/latrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Meti	nod: TO-15						
1,1-Dichloroethane	ND	ug/m3	0.083	2.02		09/17/18 18:51	75-34-3	
1,2-Dichloroethane	ND	ug/m3	0.083	2.02		09/17/18 18:51	107-06-2	
cis-1,2-Dichloroethene	102	ug/m3	0.081	2.02		09/17/18 18:51	156-59-2	
trans-1,2-Dichloroethene	0.38	ug/m3	0.081	2.02		09/17/18 18:51	156-60-5	
Methylene Chloride	13.9	ug/m3	7.1	2.02		09/17/18 18:51	75-09-2	
Tetrachloroethene	225	ug/m3	0.14	2.02		09/17/18 18:51	127-18-4	
1,1,1-Trichloroethane	32.0	ug/m3	0.11	2.02		09/17/18 18:51	71-55-6	
Trichloroethene	91.0	ug/m3	0.11	2.02		09/17/18 18:51	79-01-6	
Vinyl chloride	ND	ug/m3	0.053	2.02		09/17/18 18:51	75-01-4	

N09X48

ANALYTICAL RESULTS

Project:

IN.AMP18.01 Former Amphenol Fa

Pace Project No.: 10447725

Date: 09/18/2018 03:06 PM

Sample: MH 250051 Grab	Lab ID: 104	47725003	Collected: 09/14/	8 10:21	Received: 0	9/17/18 10:05 N	latrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Meth	nod: TO-15						
1,1-Dichloroethane	ND	ug/m3	0.083	2.02		09/17/18 19:23	75-34~3	
1,2-Dichloroethane	0.50	ug/m3	0.083	2.02		09/17/18 19:23	107-06-2	
cis-1,2-Dichloroethene	0.17	ug/m3	0.081	2.02		09/17/18 19:23	156-59-2	
trans-1,2-Dichloroethene	ND	ug/m3	0.081	2.02		09/17/18 19:23	156-60-5	
Methylene Chloride	27.5	ug/m3	7.1	2.02		09/17/18 19:23	75-09-2	
Tetrachloroethene	3.7	ug/m3	0.14	2.02		09/17/18 19:23	127-18-4	
1,1,1-Trichloroethane	0.19	ug/m3	0.11	2.02		09/17/18 19:23	71-55-6	
Trichloroethene	0.34	ug/m3	0.11	2.02		09/17/18 19:23	79-01-6	
Vinyl chloride	ND	ug/m3	0.053	2.02		09/17/18 19:23	75-01-4	

Mx9248

ANALYTICAL RESULTS

Project:

IN.AMP18.01 Former Amphenol Fa

Pace Project No.: 10447725

Date: 09/18/2018 03:06 PM

Sample: MH 250050	Lab ID: 104	47725005	Collected: 09/14/	18 11:12	Received: 09	9/17/18 10:05 N	fatrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Met	hod: TO-15						
1,1-Dichloroethane	5.4	ug/m3	0.086	2.1		09/17/18 19:58	75-34-3	
1,2-Dichloroethane	3.8	ug/m3	0.086	2.1		09/17/18 19:58	107-06-2	
cis-1,2-Dichloroethene	25.6	ug/m3	0.085	2.1		09/17/18 19:58	156-59-2	
trans-1,2-Dichloroethene	0.25	ug/m3	0.085	2.1		09/17/18 19:58	156-60-5	
Methylene Chloride	23.2	ug/m3	7.4	2.1		09/17/18 19:58	75-09-2	
Tetrachloroethene	651	ug/m3	24.3	35.3		09/18/18 11:26	127-18-4	
1,1,1-Trichloroethane	64.8	ug/m3	0.12	2.1		09/17/18 19:58	71-55-6	
Trichloroethene	272	ug/m3	0.11	2.1		09/17/18 19:58	79-01-6	
Vinyl chloride	ND	ug/m3	0.055	2.1		09/17/18 19:58	75-01-4	

TOPAH8

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

ANALYTICAL RESULTS

Project: IN.AMP18.01 Former Amphenol Fa

Pace Project No.: 10447725

Date: 09/18/2018 03:06 PM

Sample: MH 250040	Lab ID: 104	47725007	Collected: 09/14/	18 11:40	Received: 09)/17/18 10:05	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Meti	hod: TO-15						
1,1-Dichloroethane	12.0	ug/m3	0.088	2.15		09/17/18 20:30	75-34-3	
1,2-Dichloroethane	ND	ug/m3	0.088	2.15		09/17/18 20:30	107-06-2	
cis-1,2-Dichloroethene	33.1	ug/m3	0.087	2.15		09/17/18 20:30	156-59-2	
trans-1,2-Dichloroethene	0.86	ug/m3	0.087	2.15		09/17/18 20:30	156-60-5	
Methylene Chloride	17.7	ug/m3	7.6	2.15		09/17/18 20:30	75-09-2	
Tetrachloroethene	442	ug/m3	0.15	2.15		09/17/18 20:30	127-18-4	
1,1,1-Trichloroethane	105	ug/m3	0.12	2.15		09/17/18 20:30	71-55-6	
Trichloroethene	379	ug/m3	11.7	21.5		09/18/18 12:37	7 79-01-6	
Vinyl chloride	ND	ug/m3	0.056	2.15		09/17/18 20:30	75-01-4	

202418

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

ANALYTICAL RESULTS

Project:

IN.AMP18.01 Former Amphenol Fa

Pace Project No.: 10447725

Date: 09/18/2018 03:06 PM

Sample: MH 250030	Lab ID: 104	47725009	Collected: 09/14/	18 12:07	Received: 0	9/17/18 10:05 N	latrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Met	nod: TO-15						
1,1-Dichloroethane	14.1	ug/m3	0.088	2.15		09/17/18 21:03	75-34-3	
1,2-Dichloroethane	6.7	ug/m3	0.088	2.15		09/17/18 21:03	107-06-2	
cis-1,2-Dichloroethene	38.4	ug/m3	0.087	2.15		09/17/18 21:03	156-59-2	
trans-1,2-Dichloroethene	ND	ug/m3	0.087	2.15		09/17/18 21:03	156-60-5	
Methylene Chloride	16.9	ug/m3	7.6	2.15		09/17/18 21:03	75-09-2	
Tetrachloroethene	466	ug/m3	0.15	2.15		09/17/18 21:03	127-18-4	
1,1,1-Trichloroethane	117	ug/m3	0.12	2.15		09/17/18 21:03	71-55-6	
Trichloroethene	480	ug/m3	11.7	21.5		09/18/18 12:02	79-01-6	
Vinyl chloride	1.0	ug/m3	0.056	2.15		09/17/18 21:03	75-01-4	

SC ogsel18

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

ANALYTICAL RESULTS

Project:

IN.AMP18.01 Former Amphenol Fa

Pace Project No.: 10447725

Date: 09/18/2018 03:06 PM

Sample: MH 250020	Lab ID: 104	47725011	Collected: 09/14/	18 12:34	Received: 09	9/17/18 10:05 N	latrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Meti	nod: TO-15						
1,1-Dichloroethane	22.2	ug/m3	0.083	2.02		09/17/18 21:36	75-34-3	
1,2-Dichloroethane	ND	ug/m3	0.083	2.02		09/17/18 21:36	107-06-2	
cis-1,2-Dichloroethene	44.6	ug/m3	0.081	2.02		09/17/18 21:36	156-59-2	
trans-1,2-Dichloroethene	ND	ug/m3	0.081	2.02		09/17/18 21:36	156-60-5	
Methylene Chloride	23.6	ug/m3	7.1	2.02		09/17/18 21:36	75-09-2	
Tetrachloroethene	211	ug/m3	27.8	40.4		09/18/18 13:12	127-18-4	
1,1,1-Trichloroethane	242	ug/m3	0.11	2.02		09/17/18 21:36	71-55-6	
Trichloroethene	228	ug/m3	22.1	40.4		09/18/18 13:12	79-01-6	
Vinyl chloride	2.6	ug/m3	0.053	2.02		09/17/18 21:36	75-01-4	

ANALYTICAL RESULTS

Project:

IN.AMP18.01 Former Amphenol Fa

Pace Project No.: 10447725

Date: 09/18/2018 03:06 PM

Sample: MH 250010	Lab ID: 104	47725013	Collected: 09/14/	18 13:01	Received: 0	9/17/18 10:05 M	fatrix: Air	***************************************
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Met	hod: TO-15						
1,1-Dichloroethane	28.6	ug/m3	0.085	2.06		09/17/18 22:09	75-34-3	
1,2-Dichloroethane	ND	ug/m3	0.085	2.06		09/17/18 22:09	107-06-2	
cis-1,2-Dichloroethene	44.9	ug/m3	0.083	2.06		09/17/18 22:09	156-59-2	
trans-1,2-Dichloroethene	ND	ug/m3	0.083	2.06		09/17/18 22:09	156-60-5	
Methylene Chloride	29.3	ug/m3	7.3	2.06		09/17/18 22:09	75-09-2	
Tetrachloroethene	1030	ug/m3	28.4	41.2		09/18/18 13:47	127-18-4	
1,1,1-Trichloroethane	307	ug/m3	0.11	2.06		09/17/18 22:09	71-55-6	
Trichloroethene	1290	ug/m3	22.5	41.2		09/18/18 13:47	79-01-6	
Vinyl chloride	3.0	ug/m3	0.054	2.06		09/17/18 22:09	75-01-4	

Ct92418

ANALYTICAL RESULTS

Project:

IN.AMP18.01 Former Amphenol Fa

Pace Project No.: 10447725

Date: 09/18/2018 03:06 PM

Sample: MH 250055	Lab ID: 104	47725015	Collected: 09/14/1	8 14:38	Received: 0	9/17/18 10:05 I	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Meti	nod: TO-15						
1,1-Dichloroethane	7.0	ug/m3	0.086	2.1		09/17/18 22:41	75-34-3	
1,2-Dichloroethane	2.0	ug/m3	0.086	2.1		09/17/18 22:41	107-06-2	
cis-1,2-Dichloroethene	115	ug/m3	0.085	2.1		09/17/18 22:41	156-59-2	
trans-1,2-Dichloroethene	0.41	ug/m3	0.085	2.1		09/17/18 22:41	156-60-5	
Methylene Chloride	12.8	ug/m3	7.4	2.1		09/17/18 22:41	75-09-2	
Tetrachioroethene	260	ug/m3	0.14	2.1		09/17/18 22:41	127-18-4	
1,1,1-Trichloroethane	33.7	ug/m3	0.12	2.1		09/17/18 22:41	71-55-6	
Trichloroethene	111	ug/m3	0.11	2.1		09/17/18 22:41	79-01-6	
Vinyl chloride	ND	ug/m3	0.055	2.1		09/17/18 22:41	75-01-4	

209418

ANALYTICAL RESULTS

Project:

IN.AMP18.01 Former Amphenol Fa

Pace Project No.: 10447725

Date: 09/18/2018 03:06 PM

Sample: MH 250054	Lab ID: 104	47725017	Collected: 09/14/1	Collected: 09/14/18 15:13		Received: 09/17/18 10:05 N		Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
TO15 MSV AIR SIM SCAN	Analytical Met	nod: TO-15							
1,1-Dichloroethane	ND	ug/m3	0.086	2.1		09/17/18 23:14	75-34-3		
1,2-Dichloroethane	ND	ug/m3	0.086	2.1		09/17/18 23:14	107-06-2		
cis-1,2-Dichloroethene	0.30	ug/m3	0.085	2.1		09/17/18 23:14	156-59-2		
trans-1,2-Dichloroethene	ND	ug/m3	0.085	2.1		09/17/18 23:14	156-60-5		
Methylene Chloride	11.3	ug/m3	7.4	2.1		09/17/18 23:14	75-09-2		
Tetrachloroethene	2.5	ug/m3	0.14	2.1		09/17/18 23:14	127-18-4		
1,1,1-Trichloroethane	0.14	ug/m3	0.12	2.1		09/17/18 23:14	71-55-6		
Trichloroethene	0.58	ug/m3	0.11	2.1		09/17/18 23:14	79-01-6		
Vinyl chloride	ND	ug/m3	0.055	2.1		09/17/18 23:14	75-01-4		

8059418

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

ANALYTICAL RESULTS

Project: IN.AMP18.01 Former Amphenol Fa

Pace Project No.: 10447725

Date: 09/18/2018 03:06 PM

Sample: MH 250053 B	Lab ID: 104	Lab ID: 10447725019		Collected: 09/14/18 15:40		9/17/18 10:05 I	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Met	nod: TO-15						
1,1-Dichloroethane	ND	ug/m3	0.086	2.1		09/17/18 23:46	75-34-3	
1,2-Dichloroethane	0.39	ug/m3	0.086	2.1		09/17/18 23:46	107-06-2	
cis-1,2-Dichloroethene	ND	ug/m3	0.085	2.1		09/17/18 23:46	156-59-2	
trans-1,2-Dichloroethene	ND	ug/m3	0.085	2.1		09/17/18 23:46	156-60-5	
Methylene Chloride	14.1	ug/m3	7.4	2.1		09/17/18 23:46	75-09-2	
Tetrachloroethene	12.9	ug/m3	0.14	2.1		09/17/18 23:46	127-18-4	
1,1,1-Trichloroethane	1.7	ug/m3	0.12	2.1		09/17/18 23:46	71-55-6	
Trichloroethene	2.2	ug/m3	0.11	2.1		09/17/18 23:46	79-01-6	
Vinyl chloride	ND	ug/m3	0.055	2.1		09/17/18 23:46	75-01-4	

X 09418

ANALYTICAL RESULTS

Project:

IN.AMP18.01 Former Amphenol Fa

Pace Project No.: 10447725

Date: 09/18/2018 03:06 PM

Sample: MH 250053	Lab ID: 104	47725021	Collected: 09/14/18 16:05		Received: 09/17/18 10:05		Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Met	nod: TO-15						
1,1-Dichloroethane	ND	ug/m3	0.090	2.19		09/18/18 00:20	75-34-3	
1,2-Dichloroethane	0.58	ug/m3	0.090	2.19		09/18/18 00:20	107-06-2	
cis-1,2-Dichloroethene	ND	ug/m3	0.088	2.19		09/18/18 00:20	156-59-2	
trans-1,2-Dichloroethene	ND	ug/m3	0.088	2.19		09/18/18 00:20	156-60-5	
Methylene Chloride	15.1	ug/m3	7.7	2.19		09/18/18 00:20	75-09-2	
Tetrachloroethene	9.6	ug/m3	0.15	2.19		09/18/18 00:20	127-18-4	
1,1,1-Trichloroethane	3.5	ug/m3	0.12	2.19		09/18/18 00:20	71-55-6	
Trichloroethene	17.6	ug/m3	0.12	2.19		09/18/18 00:20	79-01-6	
Vinyl chloride	ND	ug/m3	0.057	2.19		09/18/18 00:20	75-01-4	

2 092418

ANALYTICAL RESULTS

Project:

IN.AMP18.01 Former Amphenol Fa

Pace Project No.: 10447725

Date: 09/18/2018 03:06 PM

Sample: FD-1	Lab ID: 104	47725023	Collected: 09/14/1	8 15:13	Received: 09/17/18 10:05		Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Met	nod: TO-15						
1,1-Dichloroethane	ND	ug/m3	0.086	2.1		09/18/18 00:52	75-34-3	
1,2-Dichloroethane	ND	ug/m3	0.086	2.1		09/18/18 00:52	107-06-2	
cis-1,2-Dichloroethene	0.24	ug/m3	0.085	2.1		09/18/18 00:52	156-59-2	
trans-1,2-Dichloroethene	ND	ug/m3	0.085	2.1		09/18/18 00:52	156-60-5	
Methylene Chloride	11.5	ug/m3	7.4	2.1		09/18/18 00:52	75-09-2	
Tetrachloroethene	2.6	ug/m3	0.14	2.1		09/18/18 00:52	127-18-4	
1,1,1-Trichloroethane	0.12	ug/m3	0.12	2.1		09/18/18 00:52	71-55-6	
Trichloroethene	0.50	ug/m3	0.11	2.1		09/18/18 00:52	79-01-6	
Vinyl chloride	ND	ug/m3	0.055	2.1		09/18/18 00:52	75-01-4	

Sc 0/24/8

ANALYTICAL RESULTS

Project:

IN.AMP18.01 Former Amphenol Fa

Pace Project No.: 10447725

Date: 09/18/2018 03:06 PM

Sample: MH 250052	Lab ID: 104	47725025	Collected: 09/14/1	Collected: 09/14/18 16:36		9/17/18 10:05 M	Matrix; Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Meti	hod: TO-15						
1,1-Dichloroethane	1.2	ug/m3	0.15	3.68		09/18/18 12:33	75-34-3	
1,2-Dichloroethane	1.3	ug/m3	0.15	3.68		09/18/18 12:33	107-06-2	
cis-1,2-Dichloroethene	18.5	ug/m3	0.15	3.68		09/18/18 12:33	156-59-2	
trans-1,2-Dichloroethene	ND	ug/m3	0.15	3.68		09/18/18 12:33	156-60-5	
Methylene Chloride	412	ug/m3	13.0	3.68		09/18/18 12:33	75-09-2	
Tetrachloroethene	268	ug/m3	0.25	3.68		09/18/18 12:33	127-18-4	
1,1,1-Trichloroethane	15.3	ug/m3	0.20	3.68		09/18/18 12:33	71-55-6	
Trichloroethene	49.3	ug/m3	0.20	3.68		09/18/18 12:33	79-01-6	
Vinyl chloride	ND	ug/m3	0.096	3.68		09/18/18 12:33	75-01-4	

2092418

ANALYTICAL RESULTS

Project:

IN.AMP18.01 Former Amphenol Fa

Pace Project No.: 10447725

Date: 09/18/2018 03:06 PM

Sample: MH 250090	Lab ID: 104	47725027	Collected: 09/14/18 17:11		Received: 09/17/18 10:05 N		Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Meth	nod: TO-15						
1,1-Dichloroethane	ND	ug/m3	0.086	2.1		09/18/18 02:00	75-34-3	
1,2-Dichloroethane	2.0	ug/m3	0.086	2.1		09/18/18 02:00	107-06-2	
cis-1,2-Dichloroethene	ND	ug/m3	0.085	2.1		09/18/18 02:00	156-59-2	
trans-1,2-Dichloroethene	ND	ug/m3	0.085	2.1		09/18/18 02:00	156-60-5	
Methylene Chloride	11.0	ug/m3	7.4	2.1		09/18/18 02:00	75-09-2	
Tetrachloroethene	24.0	ug/m3	0.14	2.1		09/18/18 02:00	127-18-4	
1,1,1-Trichloroethane	34.0	ug/m3	0.12	2.1		09/18/18 02:00	71-55-6	
Trichloroethene	102	ug/m3	0.11	2.1		09/18/18 02:00	79-01-6	
Vinyl chloride	ND	ug/m3	0.055	2.1		09/18/18 02:00	75-01-4	

D 092418

ANALYTICAL RESULTS

Project:

IN.AMP18.01 Former Amphenol Fa

Pace Project No.: 10447725

Date: 09/18/2018 03:06 PM

Sample: MH 250080	Lab ID: 104	Lab ID: 10447725029		Collected: 09/14/18 17:44		9/17/18 10:05 N	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Meth	nod: TO-15						
1,1-Dichloroethane	0.22	ug/m3	0.086	2.1		09/18/18 02:32	75-34-3	
1,2-Dichloroethane	1.6	ug/m3	0.086	2.1		09/18/18 02:32	107-06-2	
cis-1,2-Dichloroethene	ND	ug/m3	0.085	2.1		09/18/18 02:32	156-59-2	
trans-1,2-Dichloroethene	ND	ug/m3	0.085	2.1		09/18/18 02:32	156-60-5	
Methylene Chloride	13.1	ug/m3	7.4	2.1		09/18/18 02:32	75-09-2	
Tetrachloroethene	12.7	ug/m3	0.14	2.1		09/18/18 02:32	127-18-4	
1,1,1-Trichloroethane	23.9	ug/m3	0.12	2.1		09/18/18 02:32	71-55-6	
Trichloroethene	68.2	ug/m3	0.11	2.1		09/18/18 02:32	79-01-6	
Vinyl chloride	ND	ug/m3	0.055	2.1		09/18/18 02:32	75-01-4	

8 t92418

ANALYTICAL RESULTS

Project:

IN.AMP18.01 Former Amphenol Fa

Pace Project No.: 10447725

Date: 09/18/2018 03:06 PM

Sample: FD-2	Lab ID: 104	47725031	Collected: 09/14/18 17:44		Received: 09/17/18 10:05 N		Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Meti	nod: TO-15						
1,1-Dichloroethane	ND	ug/m3	0.083	2.02		09/18/18 03:39	75-34-3	
1,2-Dichloroethane	1.5	ug/m3	0.083	2.02		09/18/18 03:39	107-06-2	
cis-1,2-Dichloroethene	ND	ug/m3	0.081	2.02		09/18/18 03:39	156-59-2	
trans-1,2-Dichloroethene	ND	ug/m3	0.081	2.02		09/18/18 03:39	156-60-5	
Methylene Chloride	19.6	ug/m3	7.1	2.02		09/18/18 03:39	75-09-2	
Tetrachloroethene	12.2	ug/m3	0.14	2.02		09/18/18 03:39	127-18-4	
1,1,1-Trichloroethane	22.9	ug/m3	0.11	2.02		09/18/18 03:39	71-55-6	
Trichloroethene	65.0	ug/m3	0.11	2.02		09/18/18 03:39	79-01-6	
Vinyl chloride	ND	ug/m3	0.053	2.02		09/18/18 03:39	75-01-4	

SC 092418

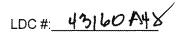
LDC #: 43160A48 VALIDATION COMPLETENESS WORKSHEET SDG #: 10447725 Level III/IV	Date: 9/20/18 Page: 10f 2
Laboratory: Pace Analytical Services, LLC	Reviewer: 15
METHOD: GC/MS Volatiles (EPA Method TO-15) / 70-15 5 1 M	2nd Reviewer:
The samples listed below were reviewed for each of the following validation areas. Validation to validation findings worksheets.	findings are noted in attached

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A/A	
11.	GC/MS Instrument performance check	۵	,
III.	Initial calibration/ICV	AA	12 % 1250 ± 30 W ± 30
IV.	Continuing calibration	۵	CN = 3
V.	Laboratory Blanks/Canister Blanks	AIN	
VI.	Field blanks	N	
VII.	Surrogate spikes	N	
VIII.	Matrix spike/Matrix spike duplicates / MY	N/A	
IX.	Laboratory control samples	A	w
X.	Field duplicates	لىي	D = 9, 12 15, 16
XI.	Internal standards	Δ	, , ,
XII.	Compound quantitation RL/LOQ/LODs	Δ	Not reviewed for Level III validation.
XIII.	Target compound identification	Δ	Not reviewed for Level III validation.
XIV.	System performance	4	Not reviewed for Level III validation.
XV.	Overall assessment of data		

Note:

ND = No compounds detected

R = Rinsate FB = Field blank

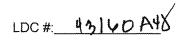

D = Duplicate TB = Trip blank EB = Equipment blank

SB=Source blank OTHER:

Note: A = Acceptable
N = Not provided/applicable
SW = See worksheet
** Indicates sample underwent Level IV validation

ma	cates sample underwent Level IV validation			
	Client ID	Lab ID	Matrix	Date
1	I.L. PPP, C (SIM) MH 250056** All others (Full scan	10447725001**	Air	09/14/18
2	MH 250051 Grab	10447725003	Air	09/14/18
3	MH 250050	10447725005	Air	09/14/18
4	MH 250040	10447725007	Air	09/14/18
5	MH 250030	10447725009	Air	09/14/18
6	MH 250020** all other full skn	10447725011**	Air	09/14/18
7	MH 250010	10447725013	Air	09/14/18
8	MH 250055	10447725015	Air	09/14/18
9	MH 250054	10447725017	Air	09/14/18
10	MH 250053 B	10447725019	Air	09/14/18
11	MH-250053 T.L. QQQ, PPP, C (SIM)	10447725021**	Air	09/14/18
12	FD-1 9	10447725023	Air	09/14/18
13 2	MH 250052	10447725025	Air	09/14/18

SDG Labo	#:43160A48 6 #:10447725 oratory: <u>Pace Analytical Se</u> " HOD: GC/MS Volatiles (E	ervices, LLC	COMPLETE Level II		SS WORKSHEET	2nd	Date: 9/20/18 Page: 20f 2 Reviewer: 7 Reviewer: 7
	Client ID			·····	Lab ID	Matrix	Date
14	MH 250090		***************************************	*************	10447725027	Air	09/14/18
15	MH 250080 V 1				10447725029	Air	09/14/18
16	FD-2 Q ,	-			10447725031	Air	09/14/18
17	MH 250080DUP				10447725029DUP	Air	09/14/18
18	FD-2DUP		00000000000000000000000000000000000000		10447725031DUP	Air	09/14/18
19							
20			***************************************				
21			***************************************				
22			· · · · · · · · · · · · · · · · · · ·	-			
23							
Note							
-	3057698-MB			_			
	3058152-MB						**************************************
				_			



VALIDATION FINDINGS CHECKLIST

	Page:_	_/of_	2
	Reviewer:	FT	
2nd	Reviewer:_	_/	
Zna	Reviewer:_	-Æ	

Method: Volatiles (EPA Method TO-15)

Wethor: Volatiles (LFA Wethor 10-13)				
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times			3,575	
Were all technical holding times met?	_			
Was canister pressure criteria met?				
II. GC/MS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 24 hour clock criteria?				
Illa. Initial calibration	12.14			
Did the laboratory perform a 5 point calibration prior to sample analysis?	/			
Were all percent relative standard deviations (%RSD) ≤ 30%?				
IIIb. Initial calibration verificattion				
Was an initial calibration verification standard analyzed after every ICAL for each instrument?	/			
Were all percent differences (%D) ≤ 30% or percent recoveries (%R) 70-130%?			<u> </u>	
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 24 hours for each instrument?				
Were all percent differences (%D) ≤ 30% or percent recoveries (%R) 70-130%?				
V. Laboratory Blanks/Canister Blanks				
Was a laboratory blank associated with every sample in this SDG?	_		<u> </u>	
Was a laboratory blank analyzed at least once every 24 hours for each matrix and concentration?				
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
Was a canister blank analyzed for every canister?			<u> </u>	
Was there contamination in the canister blanks? If yes, please see the Canister Blanks validation completeness worksheet.			1	
VI. Field Blanks				
Were field blanks identified in this SDG?			<u> </u>	
Were target compounds detected in the field blanks?			-	
VII. Surrogate spikes (Optional)				
Were all surrogate percent recoveries (%R) within QC limits?				
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				
VIII-Laboratory Duplicate	Y			
Was a laboratory duplicate analyzed for this SDG?		ļ		
Were the relative percent differences (RPD) within the QC limits?			1	

VALIDATION FINDINGS CHECKLIST

	Page:_	2 of	
	Reviewer:	FT	
2nd	Reviewer:	M	

Validation Area	Yes	No	NA	Findings/Comments
IX. Laboratory control samples				
Was an LCS analyzed for this SDG?		•		
Was an LCS analyzed per analytical batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?		<u> </u>		
X. Field duplicates				
Were field duplicate pairs identified in this SDG?		/		
Were target compounds detected in the field duplicates?			1	
XI. Internal standards				
Were internal standard area counts within \pm 40% from the associated calibration standard?				
Were retention times within \pm 20.0 seconds from the associated calibration standard?				
XII. Compound quantitation	,		- 35°	
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions applicable to level IV validation?	/			
XIII. Target compound identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?		<u> </u>		
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

METHOD: VOA

MLIND. VOA				***************************************
A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-Isopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM, Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methyl cyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1, 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1.
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC#: 43160 A48

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:	of
Reviewer:_	E
2nd Reviewer:	

METHOD: GCMS TO15

	Concentration (ug/m3)		
Compound	9	2) سوز	RPD
QQQ	0.30	0.24	22
E	11.3	11.5	2
AA	2.5	2.6	4
N	0.14	0.12	15
S	0.58	0,50	15

	Concentration (ug/m3)		
Compound	15	16	RPD
1	0.22	0.083U	NC
L	1.6	1.5	6
E	13.1	19.6	40
AA	12.7	12.2	4
N	23.9	22.9	4
s	68.2	65.0	5

LDC#: 43/60A48 SDG#: pre corer

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:____of__ Reviewer:______ 2nd Reviewer:_____

Method: TO15 SIM

Calibration	7.9			(Y)	(X)
Date	System	Compound	Standard	Response	Concentration
9/17/2018	TO15	Tetrachloroethane	1	0.001809459	0.01
	Full scan		2	0.013576014	0.02
			3	0.036674865	0.05
			4	0.071317876	0.10
			5	0.656550255	1.00
			6	1.318336362	2.00
			7	1.936396078	3.00

Regression Output

Constant	0.003800	0.000840
Std Err of Y Est		
R Squared	0.999838	0.999950
Degrees of Freedom		
X Coefficient(s)	0.648554	0.658250
Std Err of Coef.		
Correlation Coefficient	0.999919	
Coefficient of Determination (r^2)	0.999838	0.999950

LDC#: 43/60A48 SDG#: u com

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Method: TO15 SIM

Calibration				(Y)	(X)
Date	System	Compound	Standard	Response	Concentration
9/16/2018	TO15 SIM	1,2 Dichloroethane	1	0.000326358	0.0005
			2	0.000448966	0.001
			3	0.001088638	0.002
			4	0.002757794	0.005
			5	0.005762472	0.01
			6	0.011398068	0.02
			7	0.017350489	0.03

Regression Output

Reported

Constant	-0.000072	-0.000070
Std Err of Y Est		
R Squared	0.999858	0.999860
Degrees of Freedom		
X Coefficient(s)	0.578656	0.578660
Std Err of Coef.		
Consisting Confficient	0.00000	
Correlation Coefficient	0.999929	
Coefficient of Determination (r^2)	0.999858	0.999860

LDC	#:	4	3/	60	A	48

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

<u>of</u>	
	,
M	
	_of

METHOD: GC/MS VOA (EPA Method TO-15)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ average RRF = sum of the RRFs/number of standards $A_r =$ Area of compound,

 A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

 $C_x = Concentration of compound,$ S = Standard deviation of the RRFs

%RSD = 100 * (S/X)

X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF (1.0 std)	RRF (1-0 std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1_	ICAL full scan	श्वागाष्ठ	ପ୍ରୟ ଅ	0.34341	0.3434)	0.30365	0.30365	24.10859	24.1086
	ICAL	9/15/18	5	0.56299	01.56299	0.52337	052337	9.98568	9.98568
	Full Scan		AA.	1.03615	1.03615	0.92696	092676	14.46210	14.46210
3									
-									

Comments:	Refer to Initial	<u>Calibration finding</u>	<u>gs worksheet for l</u>	ist of qualification	<u>ns and associate</u>	<u>d samples when</u>	reported results d	<u>o not agree withir</u>	<u>10.0% of the</u>
recalculated	results.								

LDC #:	4	31	60	A	42	1

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:	<u></u>	_/
Reviewer:_		2
2nd Reviewer:_	a	

METHOD: GC/MS VOA (EPA TO-15)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

RRF = continuing calibration RRF

 $A_x =$ Area of compound, $C_x =$ Concentration of compound, A_{is} = Area of associated internal standard

d, C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#_	Standard ID	Calibration Date	Compound (Reference internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	cev SIM	9/17/18	12-DCD	0.100	0.10542	0.10542	5.41911	5.42
	0807							
2	cer Full	9/18/18	S	0.52337	0.5377	0.53715	2.74833	2.74833
	0809		AA		0.89362	0.89362	3-59600	3.59600
3								
Ľ								

Comments: F	Refer to Continuing C	alibration findings wo	rksheet for list of a	qualifications and a	associated sample	s when reported r	esults do not agree	e within 10.0% of the
recalculated r	esults.							
	······································	······					***************************************	······································

LDC#: 43/6 DAYS

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	<u>of</u>	
Reviewer:_		2
2nd reviewer:_		

METHOD: GC/MS VOA (EPA Method TO-15)

Y M N/A Y N N/A Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Example:

 $(A_{r})(I_{r})(DF)$ Concentration = $(A_s)(RRF)(V_o)(\%S)$ Area of the characteristic ion (EICP) for the Ą, compound to be measured Area of the characteristic ion (EICP) for the specific A_{is} internal standard Amount of internal standard added in nanograms Is (ng) RRF Relative response factor of the calibration standard. V. Volume or weight of sample pruged in milliliters (ml) or grams (g). Dilution factor. Df %S Percent solids, applicable to soils and solid matrices

Sample I.D. # | . QQQ (:TOIS- Full san)

Conc. = (64432)(10)(2.020)(96.94) (149928)(0.30369)(24.0)= 102.14 $\text{ up} \text{ | m}^3$

r	only.					
#	Sample ID	Compound		Reported Concentration	Calculated Concentration 3	Qualification
	4	Dag		102	102.14	

	#11 1,2-00	A (SIM)				
	= ([2305		(10)	(2.190) (98.95		-12
		229)				
		(0.57866) (24)			
		= 0.577 ng	[m3	1 2		
		lab reported	0.5	8 ug m3		
		•			***************************************	
						
						

LDC Report# 43160B48

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Former Amphenol Facility

LDC Report Date:

September 24, 2018

Parameters:

Volatiles

Validation Level:

Level III & IV

Laboratory:

Pace Analytical Services, LLC.

Sample Delivery Group (SDG): 10447804

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MH SS-East 1**	10447804001**	Air	09/17/18
MH SS-East 2	10447804002	Air	09/17/18
MH 250041	10447804003	Air	09/15/18
MH 250042	10447804004	Air	09/15/18
MH 250043	10447804005	Air	09/15/18
MH 250051 8 Hour	10447804006	Air	09/14/18
MH 250070	10447804007	Air	09/15/18
MH 250071	10447804008	Air	09/15/18
MH 250072	10447804009	Air	09/15/18
MH 250100	10447804010	Air	09/15/18
MH 250120	10447804011	Air	09/15/18
MH 250130	10447804012	Air	09/15/18
MH SS-North	10447804013	Air	09/17/18
MH SS-South	10447804014	Air	09/17/18
MH 250051 8 HourDUP	10447804006DUP	Air	09/14/18

^{**}Indicates sample underwent Level IV validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Sewer Gas Vapor Intrusion Investigation Work Plan, Franklin Power Products, Inc./Amphenol Corporation, Franklin, Indiana (September 2018) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) Method TO-15 and EPA Method TO-15 in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Level IV data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound for analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The canisters were properly pressurized and handled.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 24 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 30.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 30.0% for all compounds.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

Canister blank analyses were performed for every sample canister. No contaminants were found in the canister blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were not required by the method.

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation.

XIII. Target Compound Identifications

All target compound identifications met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation.

XIV. System Performance

The system performance was acceptable for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Former Amphenol Facility Volatiles - Data Qualification Summary - SDG 10447804

No Sample Data Qualified in this SDG

Former Amphenol Facility Volatiles - Laboratory Blank Data Qualification Summary - SDG 10447804

No Sample Data Qualified in this SDG

Former Amphenol Facility
Volatiles - Field Blank Data Qualification Summary - SDG 10447804

No Sample Data Qualified in this SDG

ANALYTICAL RESULTS

Project:

IN AMP 18.01 Former Amphenol

Pace Project No.: 10447804

Date: 09/19/2018 01:40 PM

Sample: MH SS- East 1	Lab ID: 104	47804001	Collected: 09/17/1	8 10:11	Received: 0	9/18/18 10:00 N	latrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Met	nod: TO-15						
1,1-Dichloroethane	0.73	ug/m3	0.086	2.1		09/18/18 20:24	75-34-3	
1,2-Dichloroethane	ND	ug/m3	0.086	2.1		09/18/18 20:24	107-06-2	
cis-1,2-Dichloroethene	0.53	ug/m3	0.085	2.1		09/18/18 20:24	156-59-2	
trans-1,2-Dichloroethene	ND	ug/m3	0.085	2.1		09/18/18 20:24	156-60-5	
Methylene Chloride	9.8	ug/m3	7.4	2.1		09/18/18 20:24	75-09-2	
Tetrachloroethene	71.5	ug/m3	0.14	2.1		09/18/18 20:24	127-18-4	
1,1,1-Trichloroethane	7.7	ug/m3	0.12	2.1		09/18/18 20:24	71-55-6	
Trichloroethene	14.6	ug/m3	0.11	2.1		09/18/18 20:24	79-01-6	
Vinyl chloride	ND	ug/m3	0.055	2.1		09/18/18 20:24	75-01-4	

ANALYTICAL RESULTS

Project:

IN AMP 18.01 Former Amphenol

Pace Project No.: 10447804

Date: 09/19/2018 01:40 PM

Sample: MH SS- East 2	Lab ID: 104	47804002	Collected: 09/17/18 10:38		Received: 09/18/18 10:00		Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Meti	nod: TO-15						
1,1-Dichloroethane	0.12	ug/m3	0.092	2.24		09/18/18 20:57	75-34-3	
1,2-Dichloroethane	0.12	ug/m3	0.092	2.24		09/18/18 20:57	107-06-2	
cis-1,2-Dichloroethene	0.12	ug/m3	0.090	2.24		09/18/18 20:57	156-59-2	
trans-1,2-Dichloroethene	ND	ug/m3	0.090	2.24		09/18/18 20:57	156-60-5	
Methylene Chloride	11.4	ug/m3	7.9	2.24		09/18/18 20:57	75-09-2	
Tetrachloroethene	10.6	ug/m3	0.15	2.24		09/18/18 20:57	127-18-4	
1,1,1-Trichloroethane	1.0	ug/m3	0.12	2.24		09/18/18 20:57	71-55-6	
Trichloroethene	2.7	ug/m3	0.12	2.24		09/18/18 20:57	79-01-6	
Vinyl chloride	ND	ug/m3	0.058	2.24		09/18/18 20:57	75-01-4	

NOS418

ANALYTICAL RESULTS

Project: IN AMP 18.01 Former Amphenol

Pace Project No.: 10447804

Date: 09/19/2018 01:40 PM

Sample: MH 250041	Lab ID: 104	47804003	Collected: 09/15/1	Collected: 09/15/18 09:26		9/18/18 10:00 N	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Meth	nod: TO-15						
1,1-Dichloroethane	0.22	ug/m3	0.086	2.1		09/18/18 22:35	75-34-3	
1,2-Dichloroethane	0.21	ug/m3	0.086	2.1		09/18/18 22:35	107-06-2	
cis-1,2-Dichloroethene	0.34	ug/m3	0.085	2.1		09/18/18 22:35	156-59-2	
trans-1,2-Dichloroethene	ND	ug/m3	0.085	2.1		09/18/18 22:35	156-60-5	
Methylene Chloride	20.6	ug/m3	7.4	2.1		09/18/18 22:35	75-09-2	
Tetrachloroethene	6.9	ug/m3	0.14	2.1		09/18/18 22:35	127-18-4	
1,1,1-Trichloroethane	1.9	ug/m3	0.12	2.1		09/18/18 22:35	71-55-6	
Trichloroethene	8.6	ug/m3	0.11	2.1		09/18/18 22:35	79-01-6	
Vinyl chloride	ND	ug/m3	0.055	2.1		09/18/18 22:35	75-01-4	

ANALYTICAL RESULTS

Project:

IN AMP 18.01 Former Amphenol

Pace Project No.: 10447804

Date: 09/19/2018 01:40 PM

Sample: MH 250042	Lab ID: 104	47804004	Collected: 09/15/	Collected: 09/15/18 09:03		9/18/18 10:00 N	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Meti	nod: TO-15						
1,1-Dichloroethane	ND	ug/m3	0.088	2.15		09/18/18 15:29	75-34-3	
1,2-Dichloroethane	0.12	ug/m3	0.088	2.15		09/18/18 15:29	107-06-2	
cis-1,2-Dichloroethene	ND	ug/m3	0.087	2.15		09/18/18 15:29	156-59-2	
trans-1,2-Dichloroethene	ND	ug/m3	0.087	2.15		09/18/18 15:29	156-60-5	
Methylene Chloride	11.5	ug/m3	7.6	2.15		09/18/18 15:29	75-09-2	
Tetrachloroethene	0.51	ug/m3	0.15	2.15		09/18/18 15:29	127-18-4	
1,1,1-Trichloroethane	ND	ug/m3	0.12	2.15		09/18/18 15:29	71-55-6	
Trichloroethene	0.39	ug/m3	0.12	2.15		09/18/18 15:29	79-01-6	
Vinyl chloride	ND	ug/m3	0.056	2.15		09/18/18 15:29	75-01-4	

X \$418

Pace Analytical Services, LLC

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

ANALYTICAL RESULTS

Project:

IN AMP 18.01 Former Amphenol

Pace Project No.: 10447804

Date: 09/19/2018 01:40 PM

Sample: MH 250043	Lab ID: 104	47804005	Collected: 09/15/	Collected: 09/15/18 08:36		9/18/18 10:00 N	latrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Metl	nod: TO-15						
1,1-Dichloroethane	ND	ug/m3	0.083	2.02		09/18/18 17:08	75-34-3	
1,2-Dichloroethane	ND	ug/m3	0.083	2.02		09/18/18 17:08	107-06-2	
cis-1,2-Dichloroethene	ND	ug/m3	0.081	2.02		09/18/18 17:08	156-59-2	
trans-1,2-Dichloroethene	ND	ug/m3	0.081	2.02		09/18/18 17:08	156-60-5	
Methylene Chloride	8.9	ug/m3	7.1	2.02		09/18/18 17:08	75-09-2	
Tetrachloroethene	0.34	ug/m3	0.14	2.02		09/18/18 17:08	127-18-4	
1,1,1-Trichloroethane	ND	ug/m3	0.11	2.02		09/18/18 17:08	71-55-6	
Trichloroethene	0.24	ug/m3	0.11	2.02		09/18/18 17:08	79-01-6	
Vinyl chloride	ND	ug/m3	0.053	2.02		09/18/18 17:08	75-01-4	

E697418

Pace Analytical Services, LLC

1700 Elm Street - Suite 200 Minneapolis, MN 55414

(612)607-1700

ANALYTICAL RESULTS

Project:

IN AMP 18.01 Former Amphenol

Pace Project No.: 10447804

Date: 09/19/2018 01:40 PM

Sample: MH 250051 8 Hour	Lab ID: 104	47804006	Collected: 09/14/	18 18:44	Received: 0	9/18/18 10:00 N	fatrix: Air		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
TO15 MSV AIR SIM SCAN	Analytical Met	hod: TO-15							
1,1-Dichloroethane	1.6	ug/m3	0.077	1.87		09/18/18 19:18	75-34-3		
1,2-Dichloroethane	ND	ug/m3	0.077	1.87		09/18/18 19:18	107-06-2		
cis-1,2-Dichloroethene	27.8	ug/m3	0.075	1.87		09/18/18 19:18	156-59-2		
trans-1,2-Dichloroethene	ND	ug/m3	0.075	1.87		09/18/18 19:18	156-60-5		
Methylene Chloride	16.1	ug/m3	6.6	1.87		09/18/18 19:18	75-09-2		
Tetrachloroethene	255	ug/m3	0.13	1.87		09/18/18 19:18	127-18-4		
1,1,1-Trichloroethane	13.0	ug/m3	0.10	1.87		09/18/18 19:18	71-55-6		
Trichloroethene	47.0	ug/m3	0.10	1.87		09/18/18 19:18	79-01-6		
Vinyl chloride	ND ND	ug/m3	0.049	1.87		09/18/18 19:18	75-01-4		

2 8p418

ANALYTICAL RESULTS

Project:

IN AMP 18.01 Former Amphenol

Pace Project No.: 10447804

Date: 09/19/2018 01:40 PM

Sample: MH 250070	Lab ID: 104	47804007	Collected: 09/15/1	Collected: 09/15/18 10:37		9/18/18 10:00 N	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Meti	hod: TO-15						
1,1-Dichloroethane	ND	ug/m3	0.086	2.1		09/18/18 16:02	75-34-3	
1,2-Dichloroethane	0.18	ug/m3	0.086	2.1		09/18/18 16:02	107-06-2	
cis-1,2-Dichloroethene	ND	ug/m3	0.085	2.1		09/18/18 16:02	156-59-2	
trans-1,2-Dichloroethene	ND	ug/m3	0.085	2.1		09/18/18 16:02	156-60-5	
Methylene Chloride	14.7	ug/m3	7.4	2.1		09/18/18 16:02	75-09-2	
Tetrachloroethene	3.9	ug/m3	0.14	2.1		09/18/18 16:02	127-18-4	
1,1,1-Trichloroethane	0.49	ug/m3	0.12	2.1		09/18/18 16:02	71-55-6	
Trichloroethene	1.1	ug/m3	0.11	2.1		09/18/18 16:02	79-01-6	
Vinyl chloride	ND	ug/m3	0.055	2.1		09/18/18 16:02	75-01-4	

81pxp03

Pace Analytical Services, LLC

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

ANALYTICAL RESULTS

Project:

IN AMP 18.01 Former Amphenol

Pace Project No.: 10447804

Date: 09/19/2018 01:40 PM

Sample: MH 250071	Lab ID: 104	47804008	Collected: 09/15/1	8 10:14	Received: 09	9/18/18 10:00 N	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Met	hod: TO-15						
1,1-Dichloroethane	ND	ug/m3	0.086	2.1		09/18/18 16:35	75-34-3	
1,2-Dichloroethane	ND	ug/m3	0.086	2.1		09/18/18 16:35	107-06-2	
cis-1,2-Dichloroethene	ND	ug/m3	0.085	2.1		09/18/18 16:35	156-59-2	
trans-1,2-Dichloroethene	ND	ug/m3	0.085	2.1		09/18/18 16:35	156-60-5	
Methylene Chloride	10.8	ug/m3	7.4	2.1		09/18/18 16:35	75-09-2	
Tetrachloroethene	0.26	ug/m3	0.14	2.1		09/18/18 16:35	127-18-4	
1,1,1-Trichloroethane	0.12	ug/m3	0.12	2.1		09/18/18 16:35	71-55-6	
Trichloroethene	0.15	ug/m3	0.11	2.1		09/18/18 16:35	79-01-6	
Vinyl chloride	ND	ug/m3	0.055	2.1		09/18/18 16:35	75-01-4	

SC 092418

ANALYTICAL RESULTS

Project: IN AMI

Date: 09/19/2018 01:40 PM

IN AMP 18.01 Former Amphenol

Pace Project No.: 10447804

Sample: MH 250072	Lab ID: 104	47804009	Collected: 09/15/	18 09:51	Received: 09	9/18/18 10:00	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Meth	nod: TO-15						
1,1-Dichloroethane	ND	ug/m3	0.085	2.06		09/18/18 17:40	75-34-3	
1,2-Dichloroethane	ND	ug/m3	0.085	2.06		09/18/18 17:40	107-06-2	
cis-1,2-Dichloroethene	ND	ug/m3	0.083	2.06		09/18/18 17:40	156-59-2	
trans-1,2-Dichloroethene	ND	ug/m3	0.083	2.06		09/18/18 17:40	156-60-5	
Methylene Chloride	11.7	ug/m3	7.3	2.06		09/18/18 17:40	75-09-2	
Tetrachloroethene	0.33	ug/m3	0.14	2.06		09/18/18 17:40	127-18-4	
1,1,1-Trichloroethane	ND	ug/m3	0.11	2.06		09/18/18 17:40	71-55-6	
Trichloroethene	ND	ug/m3	0.11	2.06		09/18/18 17:40	79-01-6	
Vinyl chloride	ND	ug/m3	0.054	2.06		09/18/18 17:40	75-01-4	

8 092418

(612)607-1700

ANALYTICAL RESULTS

Project:

IN AMP 18.01 Former Amphenol

Pace Project No.: 10447804

Date: 09/19/2018 01:40 PM

Sample: MH 250100	Lab ID: 104	Lab ID: 10447804010		Collected: 09/15/18 11:02		Received: 09/18/18 10:00 N		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Meti	nod: TO-15						
1,1-Dichloroethane	ND	ug/m3	0.086	2.1		09/18/18 18:13	75-34-3	
1,2-Dichloroethane	ND	ug/m3	0.086	2.1		09/18/18 18:13	107-06-2	
cis-1,2-Dichloroethene	ND	ug/m3	0.085	2.1		09/18/18 18:13	156-59-2	
trans-1,2-Dichloroethene	ND	ug/m3	0.085	2.1		09/18/18 18:13	156-60-5	
Methylene Chloride	14.2	ug/m3	7.4	2.1		09/18/18 18:13	75-09-2	
Tetrachloroethene	0.37	ug/m3	0.14	2.1		09/18/18 18:13	127-18-4	
1,1,1-Trichloroethane	ND	ug/m3	0.12	2.1		09/18/18 18:13	71-55-6	
Trichloroethene	0.33	ug/m3	0.11	2.1		09/18/18 18:13	79-01-6	
Vinyl chloride	ND	ug/m3	0.055	2.1		09/18/18 18:13	75-01-4	

SC 092418

(612)607-1700

ANALYTICAL RESULTS

Project:

IN AMP 18.01 Former Amphenol

Pace Project No.: 10447804

Date: 09/19/2018 01:40 PM

Sample: MH 250120	Lab ID: 104	Lab ID: 10447804011		Collected: 09/15/18 11:25		9/18/18 10:00 N	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Meti	nod: TO-15						
1,1-Dichloroethane	0.097	ug/m3	0.088	2.15		09/18/18 14:56	75-34-3	
1,2-Dichloroethane	ND	ug/m3	0.088	2.15		09/18/18 14:56	107-06-2	
cis-1,2-Dichloroethene	ND	ug/m3	0.087	2.15		09/18/18 14:56	156-59-2	
trans-1,2-Dichloroethene	ND	ug/m3	0.087	2.15		09/18/18 14:56	156-60-5	
Methylene Chloride	63.4	ug/m3	7.6	2.15		09/18/18 14:56	75-09-2	
Tetrachloroethene	3.9	ug/m3	0.15	2.15		09/18/18 14:56	127-18-4	
1,1,1-Trichloroethane	1.2	ug/m3	0.12	2.15		09/18/18 14:56	71-55-6	
Trichloroethene	1.1	ug/m3	0.12	2.15		09/18/18 14:56	79-01-6	
Vinyl chloride	ND	ug/m3	0.056	2.15		09/18/18 14:56	75-01-4	

2 692418

ANALYTICAL RESULTS

Project:

IN AMP 18.01 Former Amphenol

Pace Project No.: 10447804

Date: 09/19/2018 01:40 PM

Sample: MH 250130	Lab ID: 104	47804012	Collected: 09/15/1	8 11:48	Received: 09	9/18/18 10:00 N	1atrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Meti	nod: TO-15						
1,1-Dichloroethane	ND	ug/m3	0.086	2.1		09/18/18 18:46	75-34-3	
1,2-Dichloroethane	ND	ug/m3	0.086	2.1		09/18/18 18:46	107-06-2	
cis-1,2-Dichloroethene	ND	ug/m3	0.085	2.1		09/18/18 18:46	156-59-2	
trans-1,2-Dichloroethene	ND	ug/m3	0.085	2.1		09/18/18 18:46	156-60-5	
Methylene Chloride	13.1	ug/m3	7.4	2.1		09/18/18 18:46	75-09-2	
Tetrachloroethene	0.47	ug/m3	0.14	2.1		09/18/18 18:46	127-18-4	
1,1,1-Trichloroethane	3.1	ug/m3	0.12	2.1		09/18/18 18:46	71-55-6	
Trichloroethene	ND	ug/m3	0.11	2.1		09/18/18 18:46	79-01-6	
Vinyl chloride	ND	ug/m3	0.055	2.1		09/18/18 18:46	75-01-4	

× 09×418

ANALYTICAL RESULTS

Project:

IN AMP 18.01 Former Amphenol

Pace Project No.: 10447804

Date: 09/19/2018 01:40 PM

Sample: MH SS-North	Lab ID: 104	47804013	Collected: 09/17/1	8 09:21	Received: 09	/18/18 10:00 N	//atrix: Air	***************************************
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Met	nod: TO-15						
1,1-Dichloroethane	ND	ug/m3	0.086	2.1		09/18/18 21:29	75-34-3	
1,2-Dichloroethane	ND	ug/m3	0.086	2.1		09/18/18 21:29	107-06-2	
cis-1,2-Dichloroethene	ND	ug/m3	0.085	2.1		09/18/18 21:29	156-59-2	
trans-1,2-Dichloroethene	ND	ug/m3	0.085	2.1		09/18/18 21:29	156-60-5	
Methylene Chloride	10.3	ug/m3	7.4	2.1		09/18/18 21:29	75-09-2	
Tetrachloroethene	22.9	ug/m3	0.14	2.1		09/18/18 21:29	127-18-4	
1,1,1-Trichloroethane	0.60	ug/m3	0.12	2.1		09/18/18 21:29	71-55-6	
Trichloroethene	1.8	ug/m3	0.11	2.1		09/18/18 21:29	79-01-6	
Vinyl chloride	ND	ug/m3	0.055	2.1		09/18/18 21:29	75-01-4	

£ 69418

ANALYTICAL RESULTS

Project:

IN AMP 18.01 Former Amphenol

Pace Project No.: 10447804

Date: 09/19/2018 01:40 PM

Sample: MH SS-South	Lab ID: 104	47804014	Collected: 09/17/	8 09:45	Received: 0	9/18/18 10:00 N	fatrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR SIM SCAN	Analytical Meth	nod: TO-15						
1,1-Dichloroethane	ND	ug/m3	0.088	2.15		09/18/18 22:02	75-34-3	
1,2-Dichloroethane	ND	ug/m3	0.088	2.15		09/18/18 22:02	107-06-2	
cis-1,2-Dichloroethene	0.11	ug/m3	0.087	2.15		09/18/18 22:02	156-59-2	
trans-1,2-Dichloroethene	ND	ug/m3	0.087	2.15		09/18/18 22:02	156-60-5	
Methylene Chloride	11.6	ug/m3	7.6	2.15		09/18/18 22:02	75-09-2	
Tetrachloroethene	32.9	ug/m3	0.15	2.15		09/18/18 22:02	127-18-4	
1,1,1-Trichloroethane	0.63	ug/m3	0.12	2.15		09/18/18 22:02	71-55-6	
Trichloroethene	2.1	ug/m3	0.12	2.15		09/18/18 22:02	79-01-6	
Vinyl chloride	ND	ug/m3	0.056	2.15		09/18/18 22:02	75-01-4	

SC 092418

LDC #: 43160B48	VALIDATION COMPLETENESS, WORKSHEET	Date: 9/20/18
SDG #: 10447804	Level III///	Page: of 1
Laboratory: Pace Analytical Se	ervices, LLC	Reviewer: #5
METHOD: GC/MS Volatiles (E	PA Method TO-15 / TO -15 SIM	2nd Reviewer:

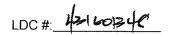
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	AA	
11.	GC/MS Instrument performance check	D	
111.	Initial calibration/ICV	41	12 % PSD = 30 U = 30 CW = 3 U
IV.	Continuing calibration	Δ	LW=3 U
V.	Laboratory Blanks/Canister Blanks	A/A	
VI.	Field blanks	N	
VII.	Surrogate spikes	N	
VIII.	Matrix spike/Matrix spike duplicates / DUP	NA	
IX.	Laboratory control samples	A	LCS
X.	Field duplicates	N	
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	A	
XIII.	Target compound identification	A	
XIV.	System performance	A	
XV.	Overall assessment of data		

Note: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank
N = Not provided/applicable R = Rinsate TB = Trip blank OTHER:
SW = See worksheet FB = Field blank EB = Equipment blank

	Client ID	Lab ID	Matrix	Date
1	MH SS-East 1 ** (E, N, AA, & - full scar)	10447804001	Air	09/17/18
2	MH SS-East 2	10447804002	Air	09/17/18
3	MH 250041	10447804003	Air	09/15/18
4	MH 250042	10447804004	Air	09/15/18
5	MH 250043	10447804005	Air	09/15/18
6	MH 250051 8 Hour	10447804006	Air	09/14/18
7	MH 250070	10447804007	Air	09/15/18
8	MH 250071	10447804008	Air	09/15/18
9	MH 250072	10447804009	Air	09/15/18
10	MH 250100	10447804010	Air	09/15/18
11	MH 250120	10447804011	Air_	09/15/18
12	MH 250130	10447804012	Air	09/15/18
13_	MH SS-North	10447804013	Air	09/17/18

LDC #: 43160B48 VALIDATION COMPLETENESS WORKSHEET SDG #: 10447804 Level III Laboratory: Pace Analytical Services, LLC METHOD: GC/MS Volatiles (EPA Method TO-15)						Date: 9 00 Page: 10f Reviewer: 11 2nd Reviewer: 12		
	Client ID			Lab ID	Matrix	Date		
14	MH SS-South			10447804014	Air	09/17/18		
15	MH 250051 8 HourDUP		manana manananya papaganya di Addele	10447804006DUP	Air	09/14/18		
16								
17			W. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18					
18			***************************************					
19								
20_								
Note	s:		The second secon					
	3058192 MB							


LDC #: 43160748

VALIDATION FINDINGS CHECKLIST

	Page:	1 of>
	Reviewer:	P7
2nd	Reviewer:	me'

Method: Volatiles (EPA Method TO-15)

The state of the s				
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times		100		
Were all technical holding times met?	/			
Was canister pressure criteria met?				
II. GC/MS Instrument performance check		o esa di santo		
Were the BFB performance results reviewed and found to be within the specified criteria?	/	_		
Were all samples analyzed within the 24 hour clock criteria?				
IIIa Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	/			
Were all percent relative standard deviations (%RSD) ≤ 30%?				
IIIb Initial calibration verificattion	,			
Was an initial calibration verification standard analyzed after every ICAL for each instrument?	/			
Were all percent differences (%D) < 30% or percent recoveries (%R) 70-130%?				
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 24 hours for each instrument?	_			
Were all percent differences (%D) ≤ 30% or percent recoveries (%R) 70-130%?				
V. Laboratory Blanks/Canister Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed at least once every 24 hours for each matrix and concentration?	/			
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.		/		
Was a canister blank analyzed for every canister?			ļ	
Was there contamination in the canister blanks? If yes, please see the Canister Blanks validation completeness worksheet.		/		
VI. Field Blanks				2 (2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Were field blanks identified in this SDG?		/		
Were target compounds detected in the field blanks?			/	
VII. Surrogate spikes (Optional)				
Were all surrogate percent recoveries (%R) within QC limits?	ļ	_	ļ	
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				
VIII. Laboratory Duplicate		/	T	
Was a laboratory duplicate analyzed for this SDG?			ļ	
Were the relative percent differences (RPD) within the QC limits?	/			

VALIDATION FINDINGS CHECKLIST

Page: 9 of 2 Reviewer: 2

Validation Area	Yes	No	NA	Findings/Comments
IX. Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per analytical batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Were field duplicate pairs identified in this SDG?		_/		
Were target compounds detected in the field duplicates?				
XI. Internal standards			ű	
Were internal standard area counts within \pm 40% from the associated calibration standard?	/			
Were retention times within \pm 20.0 seconds from the associated calibration standard?	/			
XII. Compound quantitation		51.0		
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions applicable to level IV validation?	/			
XIII. Target compound identification	189			
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?	/			
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	/			
Were chromatogram peaks verified and accounted for?				
XIV. System performance	14	2.2	(4.10 	
System performance was found to be acceptable.				
XV. Overall assessment of data				And the second second
Overall assessment of data was found to be acceptable.			<u> </u>	

LDC#:_	436084	9
SDG#:	•	•

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:	of
Reviewer:	F2_
2nd Review	wer:

Method: TO15 SIM

Calibration				(Y)	(X)
Date	System	Compound	Standard	Response	Concentration
9/16/2018	TO15 SIM	1,2 Dichloroethane	1	0.000326358	0.0005
	;		2	0.000448966	0.001
			3	0.001088638	0.002
			4	0.002757794	0.005
			5	0.005762472	0.01
			6	0.011398068	0.02
			7	0.017350489	0.03

Regression Output

Reported

Constant	-0.000072	-0.000070
Std Err of Y Est		
R Squared	0.999858	0.999860
Degrees of Freedom		
X Coefficient(s)	0.578656	0.578660
Std Err of Coef.		
Correlation Coefficient	0.999929	
Coefficient of Determination (r^2)	0.999858	0.999860

LDC#:_	431	60248	,
SDG#:	*	•	

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: of F Reviewer: 5 2nd Reviewer:

Method: TO15 SIM

Calibration				(Y)	(X)
Date	System	Compound	Standard	Response	Concentration
9/17/2018	TO15	Tetrachloroethane	1	0.001809459	0.01
	Full scan		2	0.013576014	0.02
			3	0.036674865	0.05
			4	0.071317876	0.10
			5	0.656550255	1.00
			6	1.318336362	2.00
			7	1.936396078	3.00

Regression Output

Reported

Coefficient of Determination (r^2)	0.999838	0.999950
Correlation Coefficient	0.999919	
Std Err of Coef.		
X Coefficient(s)	0.648554	0.658250
Degrees of Freedom		
Degrees of Freedom		
R Squared	0.999838	0.999950
Std Err of Y Est		
Constant	0.003800	0.000840

LDC	#:	Y	3/	6	08	48
LUC	#		//	***	_ 4	. 4

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:	_of/
Reviewer:	
2nd Reviewer:	7

METHOD: GC/MS VOA (EPA Method TO-15)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

RRF = $(A_x)(C_{xx})/(A_{xx})(C_x)$ average RF = sum of the RRFs/number of standards $A_x = Area of compound,$

A_{is} = Area of associated internal standard

C_x = Concentration of compound,

C_{is} = Concentration of internal standard

%RSD = 100 * (S/X)

S = Standard deviation of the RRFs

X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF (NO ^{Std)}	RRF (1-O std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL full scan	9(17/18	\$&Ø	0.34341	0.3434)	0.30365	0.30365	24.10BS9	24.1086
2	ICAL	9/15/18	5	0.56299	0.56299	0.52337	052337	9.98568	9.98928
ļ	Full scan		AW.	1.03615	1.03615	0.92696	092676	14.46210	14.46210
3								•••••••••••••••••••••••••••••••••••••••	
 									

Comments:	Refer to Initial	Calibration finding	s worksheet for I	ist of qualification	ns and associated	d samples when	reported results	<u>do not agree withi</u>	<u>n 10.0% of the</u>
recalculated	results.								

LDC #: 43160848

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	_lof
Reviewer:_	77
2nd Reviewer:_	a

METHOD: GC/MS VOA (EPA TO-15)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_v)(C_{is})/(A_{is})(C_v)$

RRF = continuing calibration RRF

A_{is} = Area of associated internal standard

A_x = Area of compound, C_y = Concentration of compound,

C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#_	Standard ID	Calibration Date	Compound (Reference internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	26/02	9/16/18	(1st internal standard)	0.100	0.09621	0.09617	3.79158	3.82965
	SIN		(2nd internal standard)					
	,		(3rd internal standard)					
2	26/02	9/18/18	(1st internal standard)	0.0	10,07125	10.07/27	0.71252	0.712669
			AA (2nd internal standard)	l l	10.52063	10.07/27	5.20627	5,57468
			(3rd internal standard)					
3			(1st internal standard)					
			(2nd internal standard)					
			(3rd internal standard)					
4			(1st internal standard)					
			(2nd internal standard)					
			(3rd internal standard)					

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 43160848

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	
Reviewer:	
2nd reviewer:	Ţ,

METHOD: GC/MS VOA (EPA Method TO-15)

$L^{\mathbf{Y}}$	N.	N/A
$\langle \mathbf{v} \rangle$	N	N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration = $(A_r)(I_s)(DF)$ $(A_{is})(RRF)(V_o)(\%S)$ Sample I.D. SIn (ful rear) Area of the characteristic ion (EICP) for the compound to be measured $= \frac{(9276)}{(175042)} + 0.00227 (10)(2.1)$ = (2.67926 ppbr) (131/54) = 14.6 us/m3Area of the characteristic ion (EICP) for the specific internal standard Amount of internal standard added in nanograms (ng) RRF Relative response factor of the calibration standard. Volume or weight of sample pruged in milliliters (ml) or grams (g). Df Dilution factor. Percent solids, applicable to soils and solid matrices %S

	only.				
#	Sample ID	Compound	Reported Concentration ((K) N)	Calculated Concentration ((()	Qualification
		S (Ful Fan)	14,6	74.6	puntility.
		I (SIM)	0.73	0.72	
		,			
	(SIMI)	I= ((2655/569491) #-	0.00003)	(10)(2.1)	1 CENT
	(SIMI)			(17(21)	0.55005
		= 0.7/684 paby	/		
		= 0:/- -5/110			
			,		
